A Pattern Distance-Based Evolutionary Approach to Time Series Segmentation*
نویسندگان
چکیده
Time series segmentation is a fundamental component in the process of analyzing and mining time series data. Given a set of pattern templates, evolutionary computation is an appropriate tool to segment time series flexibly and effectively. In this paper, we propose a new distance measure based on pattern distance for fitness evaluation. Time sequence is represented by a series of perceptually important points and converted into piecewise trend sequence. Pattern distance measures the trend similarity of two sequences. Moreover, experiments are conducted to compare the performance of pattern-distance based method with the original one. Results show that pattern distance measure outperforms the original one in correct match, accurate segmentation.
منابع مشابه
Missing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملTime Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization
Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...
متن کاملA Novel Fuzzy Based Method for Heart Rate Variability Prediction
Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...
متن کاملبخشبندی معنادار مدل سهبعدی اجسام بر اساس استخراج برجستگیها و هسته جسم
3D model segmentation has an important role in 3D model processing programs such as retrieval, compression and watermarking. In this paper, a new 3D model segmentation algorithm is proposed. Cognitive science research introduces 3D object decomposition as a way of object analysis and detection with human. There are two general types of segments which are obtained from decomposition based on thi...
متن کامل